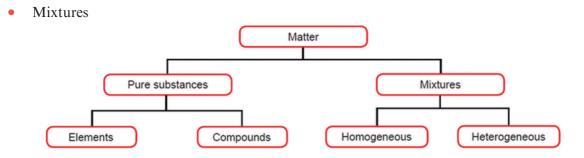

Note: Summaries are most helpful post-content review.

Gold Standard MCAT General Chemistry Review: Stoichiometry

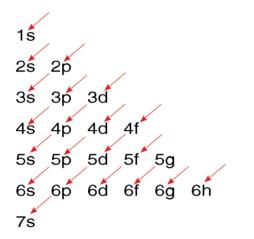
• Mole - Atomic and Molecular Weights

• Categories of Chemical Reactions



Note: Any reaction that does not involve the transfer of electrons (= change in oxidation numbers) qualifies as a non-redox reaction. Combination reactions qualify as non-redox reactions when all reactants and products are compounds and the oxidation numbers do not change. Decomposition reactions qualify as non-redox reactions when all reactants and products are compounds and the oxidation numbers do not change.

- Oxidation Numbers, Redox Reactions, Oxidizing vs. Reducing Agents
 - Here are the general rules:
 - In elementary substances, the oxidation number of an uncombined element is zero
 - In monatomic ions the oxidation number of the elements that make up this ion is equal to the charge of the ion
 - In a neutral molecule the sum of the oxidation numbers of all the elements that make up the molecule is zero
 - Some useful oxidation numbers to memorize
 - For H: +1, except in metal hydrides where it is equal to -1
 - For O: -2 in most compounds; In peroxides (e.g. in H₂O₂) the oxidation number for O is -1, it is +2 in OF₂ and -1/2 in superoxides
 - For alkali metals: +1
 - For alkaline earth metals: +2
 - Aluminium always has an oxidation number of +3 in all its compounds


Common Redox Agents			
Reducing Agents	Oxidizing Agents		
 * Lithium aluminium hydride (LiAlH₄) * Sodium borohydride (NaBH₄) * Metals * Ferrous ion (Fe²⁺) 	 * Iodine (I₂) and other halogens * Permanganate (MnO₄) salts * Peroxide compounds (i.e. H₂O₂) * Ozone (O₃); osmium tetroxide (OsO₄) * Nitric acid (HNO₃); nitrous oxide (N₂O) 		

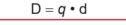
MCAT-Prep.com General Chemistry Summary

Gold Standard MCAT General Chemistry Review: Electronic Structure & The Periodic Table

• Conventional Notation for Electronic Structure

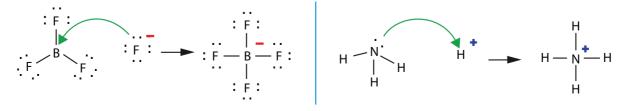
• Metals, Nonmetals and Metalloids

*General Characteristics of metals, nonmetals and metalloids


Metals	Nonmetals	Metalloids
Hard and shiny	Gases or dull, brittle solids	Appearance will vary
3 or less valence electrons	5 or more valence electrons	3 to 7 valence electrons
Form + ions by losing e ⁻	Form – ions by gaining e⁻	Form + and/ or – ions
Good conductors of heat and electricity	Poor conductors of heat and electricity	Conduct better than nonmetals, but not as well as metals

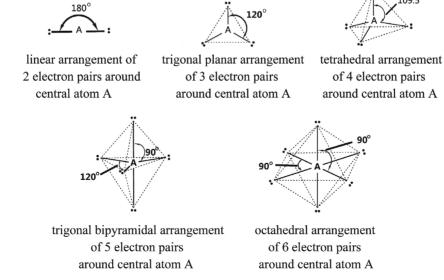
The order for filling atomic orbitals: Follow the direction of successive arrows moving from top to bottom.

*These are general characteristics. There are exceptions beyond the scope of the exam.


Gold Standard MCAT General Chemistry Review: Bonding

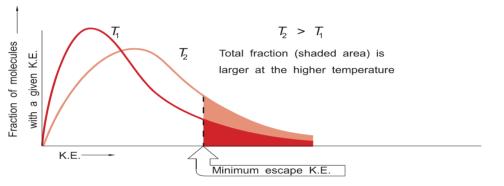
- Partial Ionic Character
 - This polar bond will also have a dipole moment given by:

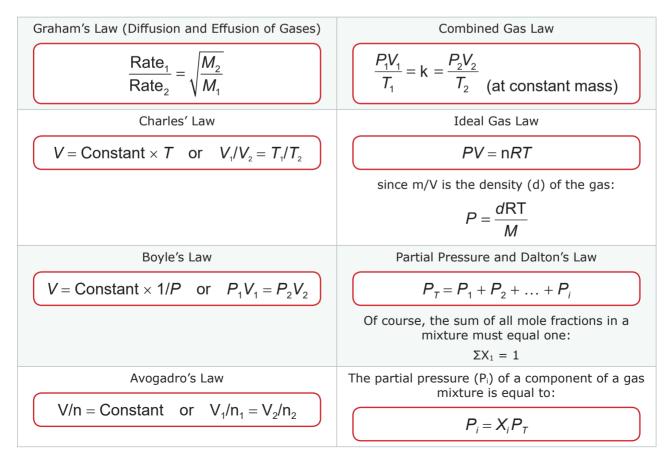
where q is the charge and d is the distance between these two atoms.


- Lewis Acids and Lewis Bases
 - The Lewis acid BF₃ and the Lewis base NH₃. Notice that the green arrows follow the flow of electron pairs. {Mnemonic: lEwis Acids: Electron pair Acceptors}

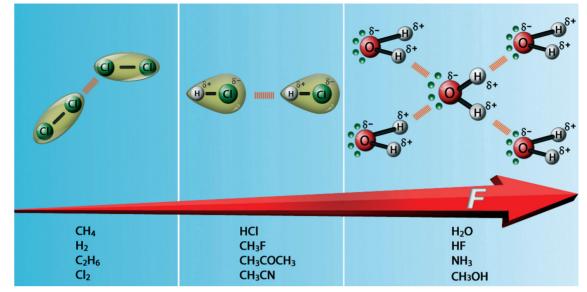
- Valence Shell Electronic Pair Repulsions (VSEPR Models)
 - Geometry of simple molecules in which the central atom A has one or more lone pairs of electrons (= e)

Total number of e⁻ pairs	Number of lone pairs	Number of bonding pairs	Electron Geometry, Arrangement of e⁻ pairs	Molecular Geometry (Hybridization State)	Examples
3	1	2	B B Trigonal planar	Bent (sp²)	SO ₂
4	1	3	B B Tetrahedral	Trigonal pyramidal (sp³)	NH₃
4	2	2	B Tetrahedral	Bent (sp³)	H ₂ O
5	1	4	B B B Trigonal bipyramidal	Seesaw (sp³d)	SF4
5	2	3	B B A B Trigonal bipyramidal	T-shaped (sp³d)	CIF₃

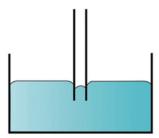

Note: dotted lines only represent the overall molecular shape and not molecular bonds. In brackets under "Molecular Geometry" is the hybridization.


Molecular arrangement of electron pairs around a central atom A. Dotted lines only represent the overall molecular shape and not molecular bonds.

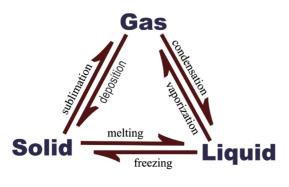
Gold Standard MCAT General Chemistry Review: Phases & Phase Equilibria

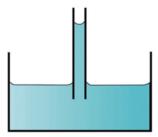

- Standard Temperature and Pressure, Standard Molar Volume
 - 0 °C (273.15 K) and 1.00 atm (101.33 kPa = 760 mmHg = 760 torr); these conditions are known as the standard temperature and pressure (STP). {Note: the SI unit of pressure is the pascal (Pa).}
 - The volume occupied by one mole of any gas at STP is referred to as the standard molar volume and is equal to 22.4 L.
- Kinetic Molecular Theory of Gases (A Model for Gases)
 - The average kinetic energy of the particles ($KE = 1/2 \text{ mv}^2$) increases in direct proportion to the temperature of the gas (KE = 3/2 kT) when the temperature is measured on an absolute scale (i.e. the Kelvin scale) and k is a constant (the Boltzmann constant).

The Maxwell Distribution Plot

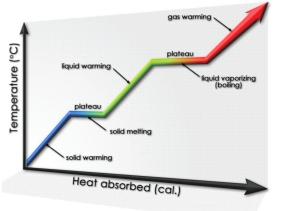

Page 4 of 12 MCAT GENERAL CHEMISTRY SUMMARY

• Liquid Phase (Intra- and Intermolecular Forces)


Van Der Waal's forces (weak) and hydrogen bonding (strong). London forces between Cl_2 molecules, dipole-dipole forces between HCl molecules and H-bonding between H₂O molecules. Note that a partial negative charge on an atom is indicated by δ - (delta negative), while a partial positive charge is indicated by δ + (delta positive). Notice that one H₂O molecule can potentially form 4 H-bonds with surrounding molecules which is highly efficient. The preceding is one key reason that the boiling point of water is higher than that of ammonia, hydrogen fluoride, or methanol.


- Surface Tension
 - PE is directly proportional to the surface area (A)
 - PE = gA; g = surface tension
 - g = F/l; F = force of contraction of surface; l = length along surface

(a) cohesive > adhesive

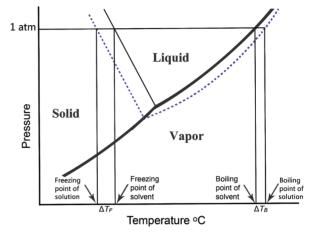

• Phase Changes

(b) adhesive > cohesive

Phase Diagrams

Gold Standard MCAT General Chemistry Review: Solution Chemistry

• Vapor-Pressure Lowering (Raoult's Law)


 $P = P^{\circ}X_{solvent}$

where P = vapor pressure of solution $P^{\circ} =$ vapor pressure of pure solvent (at the same temperature as P)

Osmotic Pressure

 $\Pi = i MRT$

where R = gas constant per mole T = temperature in degrees K and M = concentration of solute (mole/liter) i = Van't Hoff factor • Boiling-Point Elevation and Freezing-Point Depression

Phase diagram of water demonstrating the effect of the addition of a solute $\Delta T_B = i K_b m$ $\Delta T_F = i K_F m$

- Ions in Solution
 - Ions that are positively charged = $\underline{cations}$; ions that are negatively charged = \underline{anions}
 - Mnemonic: anions are negative ions
 - The word "aqueous" simply means containing or dissolved in water

Common Anions					
F ⁻	Fluoride	OH	Hydroxide	CIO ⁻	Hypochlorite
Cl	Chloride	NO ₃ -	Nitrate	CIO ₂ ⁻	Chlorite
Br⁻	Bromide	NO ₂ -	Nitrite	CIO ₃ ⁻	Chlorate
ŀ	lodide	CO ₃ ²⁻	Carbonate	CIO ₄	Perchlorate
O ²⁻	Oxide	SO42-	Sulfate	SO32-	Sulfite
S ²⁻	Sulfide	PO ₄ ³⁻	Phosphate	CN ⁻	Cyanide
N³⁻	Nitride	CH ₃ CO ₂ ⁻	Acetate	MnO ₄ -	Permanganate

Common Cations				
Na⁺	Sodium	H⁺	Hydrogen	
Li⁺	Lithium	Ca ²⁺	Calcium	
K⁺	Potassium	Mg ²⁺	Magnesium	
NH4 ⁺	Ammonium	Fe ²⁺	Iron (II)	
H₃O⁺	Hydronium	Fe ³⁺	Iron (III)	

Common Anions and Cations

- Units of Concentration
 - Molarity (M): moles of solute/liter of solution (solution = solute + solvent)
 - <u>Normality (N)</u>: one equivalent per liter
 - <u>Molality (m)</u>: one mole/1000g of solvent
 - Molal concentrations are not temperaturedependent as molar and normal concentrations are
 - Density (ρ): Mass per unit volume at the specified temperature
 - <u>Osmole (Osm)</u>: The number of moles of particles (molecules or ions) that contribute to the osmotic pressure of a solution
 - <u>Osmolarity</u>: osmoles/liter of solution
 - <u>Osmolality</u>: osmoles/kilogram of solution
 - <u>Mole Fraction</u>: amount of solute (in moles) divided by the total amount of solvent and solute (in moles)
 - $\Box \quad \underline{\text{Dilution}}: \mathbf{M}_{i}\mathbf{V}_{i} = \mathbf{M}_{f}\mathbf{V}_{f}$
- Solubility Rules
 - 1. All salts of alkali metals are soluble.
 - 2. All salts of the ammonium ion are soluble.
 - 3. All chlorides, bromides and iodides are water soluble, with the exception of Ag^+ , Pb^{2+} , and Hg_2^{2+} .
 - 4. All salts of the sulfate ion (SO_4^{2-}) are water soluble with the exception of Ca^{2+} , Sr^{2+} , Ba^{2+} , and Pb^{2+} .
 - 5. All metal oxides are insoluble with the exception of the alkali metals and CaO, SrO and BaO.
 - 6. All hydroxides are insoluble with the exception of the alkali metals and Ca^{2+} , Sr^{2+} , Ba^{2+} .
 - 7. All carbonates (CO_3^{2-}) , phosphates (PO_4^{3-}) , sulfides (S^{2-}) and sulfites (SO_3^{2-}) are insoluble, with the exception of the alkali metals and ammonium.

Gold Standard MCAT General Chemistry Review: Acids & Bases

• Acids

STRONG	WEAK
Perchloric HClO ₄	Hydrocyanic HCN
Chloric HClO ₃	Hypochlorous HClO
Nitric HNO ₃	Nitrous HNO ₂
Hydrochloric HCl	Hydrofluoric HF
Sulfuric H_2SO_4	Sulfurous H_2SO_3
Hydrobromic HBr	Hydrogen Sulfide H_2S
Hydriodic HI	Phosphoric H ₃ PO ₄
Hydronium Ion H ₃ O ⁺	Benzoic, Acetic and other Carboxylic Acids

 $K_{a} = [H^{+}][A^{-}]/[HA]$

Bases

 $K_{b} = [HB^{+}][OH^{-}]/[B]$

- Strong bases include any hydroxide of the group 1A metals
- The most common weak bases are ammonia and any organic amine.
- Conjugate Acid-Base Pairs
 - The acid, HA, and the base produced when it ionizes, A-, are called a conjugate acid-base pair.

• Solubility Product Constant, the Equilibrium Expression

 $\operatorname{AgCl}(s) \rightleftharpoons \operatorname{Ag}^{+}(aq) + \operatorname{Cl}^{-}(aq)$

 $K_{sp} = [Ag^+][CI^-]$

Because the K_{sp} product always holds, precipitation will not take place unless the product of $[Ag^+]$ and $[Cl^-]$ exceeds the K_{sp} .

MCAT-Prep.com General Chemistry Summary

• Water Dissociation

$$K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$$

• Salts of Weak Acids and Bases

 $K_{\mathsf{a}} \times K_{\mathsf{b}} = K_{\mathsf{w}}$

• Buffers

 $pH = pK_a + log([salt]/[acid])$

 $pOH = pK_b + log ([salt]/[base])$

• The pH Scale

$$pH = -log_{10}[H^+]$$

 $pOH = -log_{10}[OH^{-}]$

at 25° C, pH + pOH = 14.0

- Properties of Logarithms
 - 1. $\log_a a = 1$
 - 2. $\log_a M^k = k \log_a M$
 - 3. $\log_a(MN) = \log_a M + \log_a N$
 - 4. $\log_a(M/N) = \log_a M \log_a N$
 - 5. $10^{\log_{10}(M)} = M$

Gold Standard MCAT General Chemistry Review: Thermodynamics

• The First Law of Thermodynamics

$$\Delta E = Q - W$$

- heat <u>absorbed</u> by the system: Q > 0
- heat <u>released</u> by the system: Q < 0
- work done <u>by the system</u> on its surroundings: W > 0
- work done by the surroundings <u>on the system</u>: W < 0
- Temperature Scales

0 K =
$$-273.13 \text{ °C.}$$

(X °F -32) × 5/9 = Y °C

- State Functions
 - W can be determined experimentally by calculating the area under a pressure-volume curve

	Work	Heat	Changes in internal energy
1st tranf.	W	0	- <i>W</i>
2nd transf.	W = w + q	q	- <i>W</i>

Gold Standard MCAT General Chemistry Review: Enthalpy & Thermochemistry

- Heat of Reaction: Basic Principles
 - A reaction during which heat is released is said to be exothermic (ΔH is negative).
 - \circ If a reaction requires the supply of a certain amount of heat it is endothermic (ΔH is positive).

$$\Delta H_{OVERALL} = \Delta H_1 + \Delta H_2$$
$$\Delta H^{\circ}_{reaction} = \Sigma \Delta H^{\circ}_{f \ (products)} - \Sigma \Delta H^{\circ}_{f \ (reactants)}$$

• Bond Dissociation Energies and Heats of Formation

$$\begin{split} \Delta H^{\circ}_{(reaction)} &= \Sigma \Delta H_{(bonds \ broken)} + \Sigma \Delta H_{(bonds \ formed)} \\ &= \Sigma B E_{(reactants)} - \Sigma B E_{(products)} \end{split}$$

• Calorimetry

$$Q = mC(T_2 - T_1)$$

$$Q = m L$$

- The Second Law of Thermodynamics
 - For any spontaneous process, the entropy of the universe increases which results in a greater dispersal or randomization of the energy ($\Delta S > 0$).
- Entropy

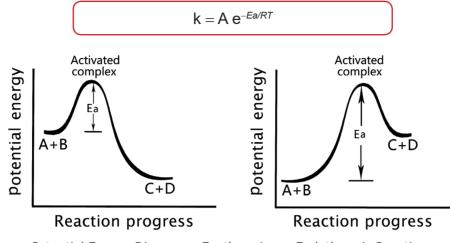
$$\Delta S^{\circ}_{\text{reaction}} = \Delta S^{\circ}_{\text{products}} - \Delta S^{\circ}_{\text{reactants}}$$

• Free Energy

 $\Delta G = \Delta H - T \Delta S$

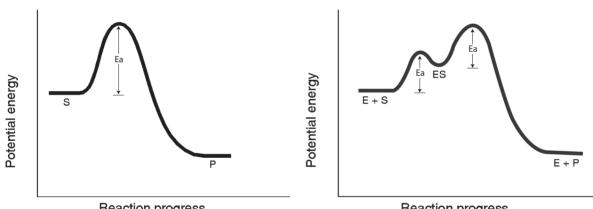
- A reaction carried out at constant pressure is spontaneous if: $\Delta G < 0$
- It is not spontaneous if: $\Delta G > 0$
- It is in a state of equilibrium (reaction spontaneous in both directions) if: $\Delta G = 0$

Gold Standard MCAT General Chemistry Review: Rate Processes in Chemical Reactions


• Dependence of Reaction Rates on Concentration of Reactants

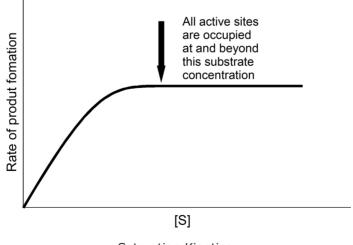
rate = k
$$[A]^{m} [B]^{n}$$

- [] is the concentration of the corresponding reactant in moles per liter
- k is referred to as the <u>rate constant</u>
- \circ m is the <u>order of the reaction with respect to A</u>
- \circ n is the <u>order of the reaction with respect to B</u>
- m+n is the <u>overall reaction order</u>


MCAT-Prep.com General Chemistry Summary

Dependence of Reaction Rates upon Temperature .

Potential Energy Diagrams: Exothermic vs. Endothermic Reactions


Catalysis

Reaction progress

Reaction progress

Potential Energy Diagrams: Without and With a Catalyst

• Equilibrium in Reversible Chemical Reactions

aA + bB ⇒ cC + dD
$$K = \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}}$$

$$\sim$$
 {Note: Catalysts speed up the rate of reaction without affecting K_{eq} }

- Le Chatelier's Principle
 - Le Chatelier's principle states that whenever a perturbation is applied to a system at equilibrium, the system evolves in such a way as to compensate for the applied perturbation.
 - Relationship between the Equilibrium Constant and the Change in the Gibbs Free Energy

$$\Delta G^{\circ} = -R T \ln K_{eq}$$

Gold Standard MCAT General Chemistry Review: Electrochemistry

- Generalities
 - The more positive the E° value, the more likely the reaction will occur spontaneously as written.
 - The strongest reducing agents have large negative E° values.
 - The strongest oxidizing agents have large positive E° values.
 - The oxidizing agent is reduced; the reducing agent is oxidized.
- Galvanic Cells
 - Mnemonic: LEO is A GERC
 - Lose Electrons Oxidation is Anode
 - Gain Electrons Reduction at Cathode
- Concentration Cell
 - Nernst equation

$$\mathsf{E}_{\mathsf{cell}} = \mathsf{E}^\circ_{\mathsf{cell}} - (\mathsf{RT/nF})(\mathsf{In}\;\mathsf{Q})$$

- Faraday's Law
 - Faraday's law relates the amount of elements deposited or gas liberated at an electrode due to current.
 - One mole (= Avogadro's number) of electrons is called a faraday (\mathfrak{F}).
 - A faraday is equivalent to 96 500 coulombs.
 - A coulomb is the amount of electricity that is transferred when a current of one ampere flows for one second ($1C = 1A \cdot S$).

Increase your chances of getting into the medical school of your choice with these MCAT preparation resources.

MCAT Prep Courses and Practice Tests

www.mcat-prep.com mcat-prep.com/mcat-prep-courses mcat-prep.com/mcat-practice-tests

Free MCAT Practice Tests and Sample Questions

mcat-prep.com/free-mcat-practice-test mcat-prep.com/mcat-sample-questions

Science Summaries

<u>mcat-prep.com/mcat-physics-equations-sheet</u> <u>mcat-prep.com/mcat-general-chemistry-review-summary</u> <u>mcat-prep.com/mcat-organic-chemistry-mechanisms</u> <u>mcat-prep.com/mcat-biochemistry-review-summary</u>

MCAT Guide

<u>mcat-prep.com/what-is-the-mcat</u> <u>mcat-prep.com/mcat-topics-list</u> <u>mcat-prep.com/mcat-scores</u> <u>mcat-prep.com/mcat-study-schedule</u>